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bubble in uniform and non-uniform electric fields

By S. M. L E E AND I. S. K A N G
Department of Chemical Engineering, Pohang University of Science and Technology, San 31,

Hyoja-dong, Pohang, 790-784 South Korea

(Received 9 March 1998 and in revised form 22 October 1998)

A three-dimensional analysis is performed to investigate the effects of an electric field
on the steady deformation and small-amplitude oscillation of a bubble in dielectric
liquid. To deal with a general class of electric fields, an electric field near the bubble is
approximately represented by the sum of a uniform field and a linear field. Analytical
results have been obtained for steady deformation and modification of oscillation
frequency by using the domain perturbation method with the angular momentum
operator approach.

It has been found that, to the first order, the steady shape of a bubble in an
arbitrary electric field can be represented by a linear combination of a finite number
of spherical harmonics Y m

l , where 0 6 l 6 4 and |m| 6 l. For the oscillation about
the deformed steady shape, the overall frequency modification from the value of
free oscillation about a spherical shape is obtained by considering two contributions
separately: (i) that due to the deformed steady shape (indirect effect), and (ii) that
due to the direct effect of an electric field. Both the direct and indirect effects of
an electric field split the (2l+1)-fold degenerate frequency of Y m

l modes, in the case
of free oscillation about a spherical shape, into different frequencies that depend on
m. However, when the average is taken over the (2l+1) values of m, the frequency
splitting due to the indirect effect via the deformed steady shape preserves the average
value, while the splitting due to the direct effect of an electric field does not.

The oscillation characteristics of a bubble in a uniform electric field under the
negligible compressibility assumption are compared with those of a conducting drop
in a uniform electric field. For axisymmetric oscillation modes, deforming the steady
shape into a prolate spheroid has the same effect of decreasing the oscillation frequency
in both the drop and the bubble. However, the electric field has different effects on
the oscillation about a spherical shape. The oscillation frequency increases with the
increase of electric field in the case of a bubble, while it decreases in the case of a drop.
This fundamental difference comes from the fact that the electric field outside the
bubble exerts a suppressive surface force while the electric field outside the conducting
drop exerts a pulling force on the surface.

1. Introduction
When a bubble or a drop is in an external field, the frequency of oscillation about

the steady shape is changed from the natural frequency of free oscillation about
spherical shape due to the effects of the external field. This frequency modification
is of fundamental interest and it has been studied by many investigators. A few
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problems discussed in previous works include those of bubble oscillation in straining
flow fields (Kang & Leal 1988), drop oscillation in electric fields (Brazier-Smith et
al. 1971; Feng & Beard 1990, 1991; Kang 1993; Trinh, Holt & Thiessen 1996), and
drop oscillation in magnetic fields (Suryanarayana & Bayazitoglu 1991; Cummings
& Blackburn 1991; Bayazitoglu et al. 1996). The present work is also in the same
category, and we are concerned with the effects of an electric field on the oscillation
frequency of a bubble in a dielectric liquid. More specifically, we are interested in
how the frequencies of axisymmetric and non-axisymmetric oscillations are changed
under the influence of electric fields.

As examples of free-surface dynamics in electric fields, the problem of a conducting
drop in free space and the problem of a bubble in a dielectric liquid are complementary
to each other. In the conducting drop problem, the electric field is normal to the
drop surface. On the other hand, in the problem of a bubble in a dielectric liquid, the
electric field is nearly tangential to the bubble surface if the permittivity of the external
dielectric fluid is much larger than that of the gas inside the bubble. Thus, the electric
field is expected to have quite different effects on frequency modification in the two
cases. In this sense, the two problems can be regarded as complementary to each other.
For the problem of a conducting drop, Feng & Beard made significant contributions.
They performed axisymmetric (Feng & Beard 1990) and three-dimensional (Feng &
Beard 1991) analyses of the oscillation of a conducting drop in an electric field to
determine the effect of a uniform electric field on the frequency change. However, the
results for the complementary problem of bubble oscillation are not available yet.
This fact provides a motivation of the present work.

In external fields, a bubble or a drop oscillates about the deformed non-spherical
steady-state shape. Thus, in computation of oscillation frequency change, the deformed
steady shape should be properly considered. This fact makes the problem quite difficult
in many situations. However, in some problems, the overall frequency change due to
the external field can be decomposed into two independent parts (to the accuracy of
the first order of the external field): (i) the frequency change of oscillation about a
spherical shape caused by the special effect of the external field, and (ii) the frequency
change of free oscillation caused by a change in equilibrium shape. The above
decomposition is possible if there is no fluid flow at steady state, as in the problem of
a conducting drop in free space under an electric field. If the decomposition is possible,
it is much more effective to discuss the two effects separately for better understanding
of the oscillation characteristics in external fields. This has not been done yet except
for the special case of axisymmetric oscillation of a drop (Kang 1993). Feng &
Beard (1991) analysed the three-dimensional oscillation about the steady shape, but
they considered the two effects together. On the other hand, a separate discussion
is available for the problem of a drop in a magnetic field. Cummings & Blackburn
(1991) obtained results for both the special magnetic field effect and the geometric
effect of equilibrium shape change. In the present problem of a bubble in an electric
field, the decomposition is also possible because there is no fluid flow at steady state
under the assumption of no charge at the bubble surface. Thus, in this work, we
consider the two effects separately.

A practical motivation of the present work can be found in the application to elec-
trohydrodynamic boiling (Choi 1962; Bonjour, Verdier & Weil 1962) and bubble/drop
dielectrophoresis (Jones & Bliss 1977; Pohl 1978; Feng 1996). In various processes,
uniform and non-uniform electric fields are applied to modify the bubble dynamics.
In particular, in the case of dielectrophoresis, quite strong non-uniform electric fields
are applied to induce a change in bubble motion, or to position a bubble at a certain
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point inside a fluid medium which may be very useful in the study of bubble dynamics.
Another related problem is the excitation of bubble oscillations with electric fields.
Recently Bellini et al. (1997) performed an experiment in which weak time-periodic
electric fields were used to selectively excite modes of different orders.

Theoretical results for bubble behaviour in non-uniform electric fields are very
limited. Jones & Bliss (1977) studied the motion and the steady shape of a bubble
in a non-uniform electric field. They computed the steady deformation of a bubble
by using the spheroidal approximation. However, as will be shown later, in most
situations, the bubble assumes non-spheroidal shapes in non-uniform electric fields.
Thus, it is fair to say that theoretical results are not available even for the steady
deformation. In the present work, we therefore want to develop theoretical results for
steady deformation and oscillation of a bubble in non-uniform electric fields as well as
in a uniform electric field. Furthermore, the results on the linear dynamical behaviour
obtained in this work are expected to play an important role in the analyses of the
nonlinear dynamical behaviour of a bubble under a time-periodic external field.

As preliminary steps for the analysis of oscillation, we obtain the electric field
distribution inside and outside a spherical bubble in § 2, and the steady shapes in § 3.
The electric field distribution of § 2 is used to predict the first-order steady deformation
of a bubble under various types of non-uniform electric fields in § 3. In § 4, the effects
of electric fields on the oscillation frequency modification are discussed in detail for
the two types of electric fields: a uniform electric field and a straining electric field.

2. Electric force exerted on a spherical bubble
In this section, we consider the electric field distribution inside and outside a

spherical bubble. To deal with a general class of electric fields, an electric field near
the bubble is approximately represented by the sum of a uniform field and a linear
field. Although only the results for a bubble in a perfect dielectric fluid under a static
electric field will be the used in the further developments in §§ 3 and 4, we consider
here a more general problem for later use in related works. We consider an alternating
electric field and the leaky dielectric model of Melcher & Taylor (1969) is adopted with
the assumption that the surface current is negligible. The same formulation was used
by Torza, Cox and Mason (1971) for computing electrohydrodynamic deformation
of liquid drops in a uniform electric field. The solution for a perfect dielectric is then
obtained as a special case.

2.1. Electric field distribution about a bubble

We consider a spherical bubble of radius a located at x′ = x′0 in a dielectric fluid

medium. The bubble is subject to a non-uniform electric field E(x′, t) = Ê(x′) cosωt
as shown in figure 1. It is assumed that the electrical properties are uniform in each of
the outside and inside phases. Furthermore, it is assumed that there is no free charge
in the fluid medium. The electrical permittivities of the phases outside and inside the
bubble are denoted by ε and εin, and the conductivities by σ and σin.

Near the bubble, the time-independent part of the non-uniform electric field can
be approximated by

Ê(x′) ' Ê(x′0) + (x′ − x′0) · (∇Ê |x′0 ) ≡ E0 + G · x, (2.1)

where E0 = Ê(x′0), G = (∇Ê |x′0 )T , and x = x′ − x′0. In (2.1), G must be symmetric
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Figure 1. A bubble in a non-uniform electric field.

(GT = G) because Ê is curl free, i.e.

∇ ∧ Ê = ∇ ∧ (G · x) = εijkGjiek = 0. (2.2)

Since εijkGji = 0 for all k, Glm = Gml . From the condition of no free charge in the
fluid medium, we have also the relation

∇ · Ê = ∇ · (G · x) = Gii = 0. (2.3)

For convenience, we adopt the notation E(x, t) = Re[Ê(x)eiωt] and E in(x, t) =
Re[Ê in(x)eiωt], where Re denotes the real part of a complex number. We also introduce
the electric potentials that satisfy Ê = ∇Ψ and Ê in = ∇Ψ̂in. Then the governing
equations for the electric potentials are

∇2Ψ̂ = 0 and ∇2Ψ̂in = 0. (2.4)

As the boundary conditions, we have the far-field condition

Ψ̂ → Ψ̂∞ = E0 · x+ 1
2
x ·G · x as r →∞ (2.5)

and the matching conditions at the bubble surface

εn · ∇Ψ̂ −εinn · ∇Ψ̂in = σ̂f , (2.6)

t · ∇Ψ −t · ∇Ψin = 0, (2.7)

σn · ∇Ψ̂ −σinn · ∇Ψ̂in = −iωσ̂f, (2.8)

where the surface free charge density is defined by σf = Re[σ̂f eiωt], r = ‖x‖, n is
the outwardly directed unit normal vector from the bubble surface, and t the unit
tangent vector. Equation (2.6) is the jump condition of the normal component of the
displacement vector, (2.7) represents the continuity of the tangential component of
the electric field, and (2.8) is the unsteady balance of free charge at the bubble surface.
In (2.8), the contribution of the surface current due to convection and conduction is
neglected. For analysis, it is convenient to combine (2.6) and (2.8) to eliminate the
surface free charge term as

ζn · ∇Ψ̂ − ζinn · ∇Ψ̂in = 0 at r = a (2.9)

where ζ = σ + iωε.
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Now, the solution procedure is straightforward. The external electric potential Ψ̂
is given in terms of spherical harmonics as

Ψ̂ = Ψ̂∞ + Ψ̂ ′

= (E0 · x)

(
1 +

A

r3

)
+ 1

2
(x ·G · x)

(
1 +

B

r5

)
(2.10)

and the potential of the internal electric field is

Ψ̂in = CE0 · x+ 1
2
D x ·G · x. (2.11)

In (2.10) and (2.11), the coefficients A, B, C , D are obtained by using the matching
conditions at the bubble surface (r = a). The outside and inside electric fields at the
bubble surface (x = an) are then given by

Ê =

(
1 +

A

a3

)
E0 − 3

A

a3
(E0 · n)n+ a

(
1 +

B

a5

)
(G · n)− 5

2

B

a4
(n ·G · n)n (2.12)

and
Ê in = CE0 + DG · n. (2.13)

By substituting (2.12) and (2.13) into (2.7) and (2.9), we obtain

A =
1− Z
2 + Z

a3, B =
2(1− Z)

3 + 2Z
a5, C =

3

2 + Z
, D =

5

3 + 2Z
,

where Z = ζin/ζ = (σin + iωεin)/(σ + iωε). Therefore, the electric fields at the bubble
surface (x = an) are given by

E = A1E0 − A2(E0 · n)n+ B1G · n− B2(n ·G · n)n, (2.14)

E in = A1E0 + B1G · n, (2.15)

where

A1 = Re

[
3eiωt

2 + Z

]
, A2 = Re

[
3(1− Z)eiωt

2 + Z

]
,

B1 = Re

[
5aeiωt

3 + 2Z

]
, B2 = Re

[
5a(1− Z)eiωt

3 + 2Z

]
,

with Z = ζin/ζ = (σin + iωεin)/(σ + iωε). In general, Z is a complex number and the
expressions for A1, A2, B1, B2 are very complicated. However, in the following special
cases they have relatively simple expressions.

(i) Static electric field (ω = 0): if the external fluid is not perfectly dielectric (σ 6= 0),
Z reduces to R ≡ σin/σ in the static case. Thus, we have

A1 =
3

2 + R
, A2 =

3(1− R)

2 + R
, B1 =

5a

3 + 2R
, B2 =

5a(1− R)

3 + 2R
. (2.16)

(ii) Perfect dielectric: if both phases are perfectly dielectric (i.e. σ = σin = 0), Z
reduces to q ≡ εin/ε in the oscillating field case (ω 6= 0). Thus, we have

A1 =
3

2 + q
cosωt, A2 =

3(1− q)

2 + q
cosωt,

B1 =
5a

3 + 2q
cosωt, B2 =

5a(1− q)

3 + 2q
cosωt.

 (2.17)
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In the static case, we need to assume that σ̂f = 0 in order for (2.17) to be valid
also for the limit ω = 0.

(iii) Leaky dielectric with R = σin/σ → 0 and q = εin/ε → 0: in this case, Z = 0
and we have

A1 = 3
2

cosωt, A2 = 3
2

cosωt, B1 = 5
3
a cosωt, B2 = 5

3
a cosωt. (2.18)

Here we should mention the work of Feng (1996), who considered the special case
of an axisymmetric static electric field. He obtained the electric field distribution and
used his solution to study drop dielectrophoresis.

2.2. Electric force exerted on a bubble

Now let us compute the force exerted on the spherical bubble by the external electric
field. The Maxwell stress tensor is given by

T e = ε(EE − 1
2
E2I ), (2.19)

where E2 = E ·E . Then the electric force per unit surface area is

fe ≡ n ·T e = ε(EnE − 1
2
E2n), (2.20)

where En = n ·E . Substituting (2.14) into (2.20), we have for the electric force exerted
on unit surface area

fe = ε
[
(A1 − A2)B1(E0 · n)G · n+ A1(B1 − B2)(n ·G · n)E0

−A1B1(E0 ·G · n)n+ A2B2(E0 · n)(n ·G · n)n]
+odd functions of n. (2.21)

The total electric force exerted on the spherical surface is then

F e = a2

∫
Ω

fedΩ, (2.22)

where Ω denotes the surface of a unit sphere. By using the fact that GT = G and the
identities ∫

Ω

ninjdΩ =
4π

3
δij , (2.23)∫

Ω

ninjnknldΩ =
4π

15
(δijδkl + δikδjl + δilδjk), (2.24)

we can integrate (2.22) with fe given in (2.21), to show that

F e

εa2
=

4π

15
A2(−5B1 + 2B2)E0 ·G . (2.25)

For the special cases we have considered in (2.16), (2.17), (2.18), we have the following
results:

(i) static electric field:

F e = −(4πεa3)

(
1− R
2 + R

)
E0 ·G , (2.26)

(ii) perfect dielectric:

F e = −(4πεa3)

(
1− q
2 + q

)
E0 ·G cos2 ωt, (2.27)

(iii) leaky dielectric in the limit R = σin/σ → 0 and q = εin/ε→ 0:

F e = −(2πεa3)E0 ·G cos2 ωt. (2.28)
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Some comments should be made about the above special cases. In the case of
perfect dielectric material, we have (E0 cosωt) · (G cosωt) = E(0, t) · (∇E(x, t)|x=0)

T =
1
2
∇|E(x, t)|2. Thus

F e = −(2πεa3)

(
1− q
2 + q

)
∇|E(x, t)|2. (2.29)

This is the well-known result for a perfect dielectric sphere in another perfect dielectric
medium (Pohl 1978). From (2.26)–(2.28), we can see also that the total electric force
due to the given non-uniform electric field is proportional to a3, and thus it is
proportional to the bubble volume.

As mentioned in the introduction, hereinafter we limit our attention to the case of
perfect dielectrics with zero surface free charge. As well known, if there is no surface
free charge, electrical tangential stress is continuous across the interface and thus the
hydrodynamic stress is also continuous. Therefore, there is no fluid flow induced by
the electric field for a bubble with equilibrium shape at steady state. For more general
leaky dielectric cases, we must consider also the induced fluid flow. The more general
cases will be studied in future work.

3. Steady-state shape of a bubble in an electric field
In this section, we are concerned with the steady deformation of a bubble in a

perfect dielectric liquid under a static non-uniform electric field. For simplicity, the
net force exerted on the bubble is assumed to be zero. To do that, it is assumed that
there is no gravity force if the electric field exerts no net force on the bubble or it is
assumed that the gravity force cancels out the electric force if a net electric force is
present. It is further assumed that the electric field is weak enough so that the electric
field distribution obtained for a spherical bubble in § 2 may be used to obtain the
first-order deformation.

The steady deformation of a bubble can be obtained by using the steady normal
stress balance

[[Te
nn]] + (Pin − P∞) = γ∇ · n, (3.1)

where Te
nn = n · (n ·T e) and [[ ( · ) ]] denotes the outside quantity minus the inside

quantity. Under the assumed conditions, (3.1) can be written by using (2.19) as

− 1
2
ε
[
(E2 − qE2

in)− 2
(
(E · n)2 − q(E in · n)2

)]
+ (Pin − P∞) = γ∇ · n, (3.2)

where q = εin/ε. If we non-dimensionalize the above equation by using the character-
istic electric field scale Ec and the pressure scale pc = γ/a, we have

− 1
2
W∆E∗2 + (P ∗in − P ∗∞) = ∇∗ · n (3.3)

where W is the electrical Weber number defined by W = (εE2
c a)/γ and

∆E∗2 = E∗2 − qE∗in2 − 2
[
(E∗ · n)2 − q(E∗in · n)2

]
. (3.4)

A suitable characteristic scale Ec for the electric field will be determined later.
It might be useful to estimate the magnitude of W for a typical situation before

starting our detailed analysis. For a bubble of radius of a = 10−3 m in a dielectric
liquid of ε = 5×10−11 F m−1 and γ = 5×10−2 N m−1, we have W = 10−2 for Ec = 105

V m−1, and W = 1 for Ec = 106 V m−1.
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In this problem, we assume that the electric field is weak enough so that 0 < W � 1.
Then the first-order deformation can be obtained by using the solution for the electric
field around a spherical bubble. We assume the bubble shape as

r∗ = 1 +Wζs(θ, φ) = 1 +W
∑
l,m

αlmY
m
l (θ, φ), (3.5)

where l > 0 and |m| 6 l. Then the curvature term becomes

∇∗ · n = 2 +W
∑
l,m

αlm(l + 2)(l − 1)Y m
l + O(W 2), (3.6)

and the dimensionless internal pressure is given by

P ∗in = P ∗g0(1− 3κα00WY 0
0 ) + P ∗vap + O(W 2), (3.7)

where P ∗g0 is the inside gas pressure in the absence of an electric field and P ∗vap is the
dimensionless vapour pressure. In (3.7), κ is the ratio of the specific heats for a gas
bubble and κ = 1 for an isothermal vapour bubble. By substituting (3.6) and (3.7)
into (3.3), we get

P ∗g0 + P ∗vap − P ∗∞ = 2, (3.8)

− 1
2
∆E∗2 − 3κα00P

∗
g0Y

0
0 =

∑
l,m

αlm(l + 2)(l − 1)Y m
l . (3.9)

If we expand ∆E∗2 as

∆E∗2 =
∑
l,m

〈l, m|∆E∗2〉Y m
l , (3.10)

where

〈l, m|∆E∗2〉 =

∫ 2π

0

∫ π

0

(∆E∗2)Y m
l
∗ sin θdθdφ (3.11)

and Y m
l
∗ is the complex conjugate of Y m

l , then we have

α00 = − 〈0, 0, |∆E
∗2〉

2(3κP ∗g0 − 2)
, αlm = − 〈l, m|∆E∗2〉

2(l + 2)(l − 1)
(l 6= 1). (3.12)

If 〈l, m|∆E∗2〉 6= 0 for any m with l = 1, it means there is a net electric force exerted
on the bubble. In that case, the net electric force must be cancelled out by the gravity
force or others in order for the bubble to stay at the fixed position.

In the case of perfect dielectrics (σin = σ = 0), the static electric fields inside and
outside the bubble are given by

E =

(
3

2 + q

)
[E0 − (1− q)(E0 · n)n]

+

(
5a

3 + 2q

)
[G · n− (1− q)(n ·G · n)n] , (3.13)

E in =

(
3

2 + q

)
E0 +

(
5a

3 + 2q

)
G · n (3.14)
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Figure 2. The coordinate system adopted in the present study.

from (2.14) and (2.15), and in the non-dimensional form they are given by

E∗ =

(
3

2 + q

)
[E∗0 − (1− q)(E∗0 · n)n]

+

(
5

3 + 2q

)(
aG

Ec

)
[G∗ · n− (1− q)(n ·G∗ · n)n], (3.15)

E∗in =

(
3

2 + q

)
E∗0 +

(
5

3 + 2q

)(
aG

Ec

)
G∗ · n (3.16)

where G is the characteristic value of G . Thus,

∆E∗2 =
9(1− q)

(2 + q)2
[E∗0

2 − (1− q)(E∗0 · n)2]

+
30(1− q)

(2 + q)(3 + 2q)

(
aG

Ec

)
[E∗0 ·G∗ · n− (1− q)(E∗0 · n)(n ·G∗ · n)]

+
25(1− q)

(3 + 2q)2

(
aG

Ec

)2

[(n ·G∗2 · n)− (1− q)(n ·G∗ · n)2]. (3.17)

For convenience, we consider the coordinate system shown in figure 2, where the unit
normal vector is given by

n = (cos θ, sin θ cosφ, sin θ sinφ). (3.18)

In the following subsections, we will consider several specific cases. However, at this
point we can make a comment on the steady deformation of a bubble. As we can see in
(3.17), the uniform field part (the first line of (3.17)) results in the steady deformation
of Y 0

0 (θ, φ)- and Y 0
2 (θ, φ)-modes and the straining electric field part (the third line of

(3.17)) results in the modes of Y 0
0 (θ, φ), Y m

2 (θ, φ), Y m
4 (θ, φ). The interaction terms of

uniform field and the straining field result in the modes of Y m
1 (θ, φ) and Y m

3 (θ, φ).
This general statement is valid for all cases if the bubble is sufficiently small so that
the non-uniform field is approximated by

E∞(x) = E0 + G · x. (3.19)
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3.1. Uniform electric field

For the uniform electric field of which the undisturbed electric field is given by
E∞(x) = E0e1, we take Ec = E0. Then we have

∆E∗2 =
9(1− q)

(2 + q)2
[1− (1− q) cos2 θ]

= −3(1− q)

(2 + q)2
P2(cos θ) +

3(1− q)

2 + q
P0(cos θ). (3.20)

In this case, the equilibrium bubble shape is given by r∗ = 1 +Wζs(θ, φ) with

ζs(θ, φ) =
3(1− q)2

4(2 + q)2
P2(cos θ)− 3(1− q)

2(2 + q)(3κP ∗g0 − 2)
P0(cos θ), (3.21)

where P ∗g0 = 2 + P ∗∞ − P ∗vap, and W = (εE2
0a)/γ. For the special case of q = εin/ε→ 0,

we have

ζs(θ, φ) = 3
16
P2(cos θ)− 3

4(3κP ∗g0 − 2)
P0(cos θ). (3.22)

Equation (3.22) indicates a quite interesting result. The steady bubble volume may be
increased or decreased depending on the value of P ∗g0. If P ∗g0 > (2/3κ), the contribution
of gas pressure is dominant inside the bubble and the bubble volume is decrease due
to the compressive electric force. However, if P ∗g0 < (2/3κ), the bubble volume is
increased. In this case, the contribution of the vapour pressure is dominant and the
total pressure inside the bubble is not much affected by the volume change. When
P ∗∞ is fixed, under the additional compressive electric force, the inside pressure can be
kept nearly constant only by reducing the compressive force due to surface tension.
Thus, the bubble radius should be increased as predicted in (3.22).

3.2. Axisymmetric straining electric field

In the case E∞(x) = G · x, we take Ec = aG. Then the dimensionless electric field
gradient of the straining electric field is given by

G∗ =

 1 0 0
0 − 1

2
0

0 0 − 1
2

 (3.23)

and we have

∆E∗2 = −90(1− q)2

7(3 + 2q)2
P4(cos θ) +

25(1− q)(3 + 4q)

14(3 + 2q)2
P2(cos θ)

+
5(1− q)

2(3 + 2q)
P0(cos θ). (3.24)

The equilibrium shape is given by r∗ = 1 +Wζs(θ, φ) with

ζs(θ, φ) =
5(1− q)2

14(3 + 2q)2
P4(cos θ)− 25(1− q)(3 + 4q)

112(3 + 2q)2
P2(cos θ)

− 5(1− q)

4(3 + 2q)(3κP ∗g0 − 2)
, (3.25)

where W = (εG2a3)/γ. In the case of q = εin/ε→ 0, we have

ζs(θ, φ) = 5
126
P4(cos θ)− 25

336
P2(cos θ)− 5

12(3κP ∗g0 − 2)
. (3.26)
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Figure 3. The equilibrium shapes of a bubble in a uniform field (a) and in an axisymmetric
straining field (b).

The equilibrium shape of a bubble in an axisymmetric straining field is shown with
that in a uniform field in figure 3. The parameter values are W = 1 and P ∗g0 = ∞
(since the bubble deformations for small Weber numbers are very small, here we
use intentionally a large value of W to show the deformation characteristics more
clearly). As we can see in the figure, the bubble does not have a spheroidal shape in
a straining electric field. It has the largest radius at the equator.

Thus far, we have considered axisymmetric electric fields. In the following, we con-
sider several cases where non-axisymmetric equilibrium shapes are obtained. However,
we consider only the case of q → 0 for simplicity.

3.3. Two-dimensional hyperbolic electric field

In the case of two-dimensional hyperbolic electric field shown in figure 4(a), we have
the dimensionless electric field gradient

G∗ =

(
1 0 0
0 −1 0
0 0 0

)
. (3.27)

If q = 0, we have from (3.17)

∆E∗2 = 25
9

[
(n ·G∗2 · n)− (n ·G∗ · n)2

]
(3.28)

and

∆E∗2 = 25
9

[
cos2 θ + (1− cos2 θ) cos2 φ

−(cos4 θ + (1− cos2 θ)2 cos4 φ− 2 cos2 θ(1− cos2 θ) cos2 φ
)]
. (3.29)
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Figure 4. The equilibrium bubble shapes in a hyperbolic field (a) and in a combined
electric field (b).

The equilibrium bubble shape is then given by r∗ = 1 +Wζs(θ, φ) with

ζs(θ, φ) =
∑
l,m

αlmY
m
l (θ, φ), (3.30)

where W = (εG2a3)/γ and

α0,0 = − 10(π)1/2

9(3P ∗g0 − 2)

α2,0 = −5(5π)1/2

252
, α2,±2 = −5(30π)1/2

504
,

α4,0 =
95(π)1/2

3402
, α4,±2 = −25(π/10)1/2

567
, α4,±4 =

25(π/70)1/2

486

all other αl,m = 0.
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The static shape of an incompressible bubble in the above hyperbolic electric field
is shown in figure 4(a) for the electrical Weber number W = 1. As in the case
of axisymmetric deformation, we use intentionally a large value of W to show the
deformation characteristics clearly. If we look at the x1, x2 section at x3 = 0 (φ = 0
for x2 > 0 and φ = π for x2 < 0), we can see that the bubble is most deformed near
θ = π/4 and θ = 3π/4 due to the strong electric field near those points. However, if
we look at the x1, x3 section, we can see that the bubble is extended in the x3-direction
because the electric field is relatively weaker at the intersections of x3-axis and the
bubble surface than at the intersection of x1-axis. Since a constant bubble volume is
assumed, the bubble is extended to make up for the inward deformation at the x1, x2

section.

3.4. Combination of uniform and hyperbolic fields

As a special case where non-zero net electric force results, we consider an electric field

E∞(x) = E0ex + G(yex + xey) with G =
E0

a
. (3.31)

The dimensionless electric field is represented by

E∗0 = (1, 0, 0) and G∗ =

(
0 1 0
1 0 0
0 0 0

)
, (3.32)

and the corresponding electric field is shown in figure 4(b). Then from (3.17) we have
for the q = 0 case

∆E∗2 = 9
4
(1− cos2 θ) + 5 sin θ(1− 2 cos2 θ) cosφ

+ 25
9

(cos2 θ + sin2 θ cos2 φ− 4 cos2 θ sin2 θ cos2 φ). (3.33)

In this example, 〈1, m|∆E∗2〉 are not zero for all m. Specifically we have

〈1, 1|∆E∗2〉 = −(6π)1/2 and 〈1,−1|∆E∗2〉 = (6π)1/2. (3.34)

Now we show that (3.34) corresponds to non-zero net electric force dimensionless
net electric force can be computed by

(F e)∗ = −1

2

∫ 2π

0

∫ π

0

∆E∗2n sin θ dθ dφ

= −1

2

∫ 2π

0

∫ π

0

∆E∗2(cos θ, sin θ cosφ, sin θ sinφ) sin θ dθ dφ (3.35)

Since

sin θ cosφ = −(2π/3)1/2(Y 1
1 − Y −1

1 ) = (2π/3)1/2(Y −1
1

∗ − Y 1
1

∗
), (3.36)

we have

(Fe2)∗ = − 1
2

(
2π/3

)1/2(〈1,−1|∆E∗2〉 − 〈1, 1|∆E∗2〉) = −2π. (3.37)

In dimensional form Fe2 = −(2πεa3)E0G, and this result is the same as that in § 2. The
equilibrium shape is given by r∗ = 1 +Wζs(θ, φ) with

ζs(θ, φ) =
∑
l,m

αlmY
m
l (θ, φ), (3.38)
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E¢ = E0 + G · x

x
n

θ φ

Figure 5. A bubble oscillating in a non-uniform electric field.

where W = (εG2a3)/γ and

α0,0 = − 47(π)1/2

18(3κP ∗g0 − 2)

α2,0 =
139(π/5)1/2

504
, α2,±2 = −5(5π/6)1/2

84
,

α3,±1 = ∓2(π/21)1/2

5
,

α4,0 = −40(π)1/2

1701
, α4,±2 =

100(π/10)1/2

1701
(3.39)

all other αl,m = 0.
The static shape of an incompressible bubble in the above combined electric field

is shown in figure 4(b) for W = 1. If we look at the x1, x2 section, we can see that
the bubble is deformed into a heart shape. As shown in figure 4(b), the electric field
is strongest near the point (0, 1, 0) on the bubble surface while it becomes zero at the
points in the middle of the first and second quadrants. Thus, the bubble is deformed
inward near the point (0, 1, 0), and deformed outward near the points of zero electric
field.

4. Small-amplitude oscillation of a bubble
We consider now the small-amplitude oscillation of a bubble in a perfect dielectric

fluid about the steady shape under a non-uniform electric field as shown in figure
5. The viscosity effect is assumed to be negligibly small so that the potential flow
solution is the leading-order solution for the flow field. As non-axisymmetric steady
shapes, we consider the cases of q = εin/ε → 0 for simplicity. In this situation, the
internal electric field does not contribute to the normal stress balance as shown below
equation (3.1). Thus, we need to consider only the electric and velocity fields outside
the bubble, and we use the electric and velocity potentials such that E = ∇Ψ and
u = ∇Φ in the problem formulation. The governing equations and the boundary
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conditions are non-dimensionalized by the following characteristic scales:

lc = a, tc =

(
ρa3

γ

)1/2

, Φc =

(
γa

ρ

)1/2

, pc =
γ

a
, Ec. (4.1)

The characteristic scale for the electric field Ec has not been specified here yet, and
will be determined later. For convenience, hereinafter, the superscript asterisk for
the dimensionless variables is dropped if not confusing. The dimensionless governing
equation for the electric field is

∇2Ψ = 0, (4.2)

and that for the fluid motion is

∇2Φ = 0. (4.3)

For the boundary conditions, we have the far-field conditions

∇Φ→ 0, ∇Ψ → E0 + G · x as r →∞, (4.4)

and the conditions at the bubble surface:
(i) kinematic condition

−∂F
∂t

= ∇Φ · ∇F, (4.5)

(ii) normal stress condition

− 1
2
WE2 +

∂Φ

∂t
+ 1

2
∇Φ · ∇Φ+ 2S

∂2Φ

∂n2
− pv + (Pin − P∞) = ∇ · n, (4.6)

(iii) zero permittivity ratio condition (q = εin/ε→ 0)

En = n · ∇Ψ = 0, (4.7)

where F = r − R(θ, φ, t) is the shape function for the bubble surface. The term
2S(∂2Φ/∂n2) represents the viscous normal stress and pv is the pressure correction
due to the weak viscous effect. The dimensionless number S is defined as (for a more
detailed discussion of these terms, see Kang & Leal 1988)

S =
µ

(ρaγ)1/2
=

tc

a2/(µ/ρ)
. (4.8)

In the present problem, we again consider the case 0 < W � 1. Then the small-
amplitude oscillation problem can be effectively analysed by the domain perturbation
method. To do that we assume that the potentials and the shape function are expanded
to O(ε), where ε is the small parameter for small-amplitude oscillation, as

Ψ = Ψs + εΨu, Φ = εΦu, R = 1 +Wζs + εζu, (4.9)

where the subscript u denotes the unsteady state. For our analysis of the non-
axisymmetric shape oscillation, we introduce the angular momentum operator which
is defined by

L = −ir ∧ ∇, (4.10)

where r is the position vector. Then we use identities

∇f · ∇g =
∂f

∂r

∂g

∂r
− 1

r2
(Lf ·Lg) (4.11)

and

2(Lf ·Lg) = L2(fg)− fL2g − gL2f, (4.12)
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where L2 = L ·L (see Arfken 1985 for the properties of the angular momentum
operator). We can now show that the boundary conditions at the bubble surface can
be transformed to the equivalent conditions at r = 1, which are accurate to O(W ), as
the following.

(i) Kinematic condition

∂ζu

∂t
=
∂Φu

∂r
+Wζs

∂2Φu

∂r2
+ 1

2
W
[
L2(Φuζs)− ΦuL2(ζs)− ζsL2(Φu)

]
. (4.13)

(ii) Normal stress condition

1
2
W

[
L2(ΨsΨu)−ΨsL

2(Ψu)−ΨuL
2(Ψs)− ζu ∂

∂r
(∇Ψs · ∇Ψs)

]

+
∂Φu

∂t
+Wζs

∂2Φu

∂r∂t
+ 2S

∂2Φu

∂r2
− p̃v − 3κ〈ζu〉Pg0

=
[−2ζu + L2(ζu)

]
+ 2W

[
2ζsζu − ζsL2(ζu)− ζuL2(ζs)

]
(4.14)

where ∂Ψs/∂r = 0 and

Pin = Pg0〈(1 +Wζs + εζu)
3〉−κ + Pvap. (4.15)

For a gas bubble, we assume κ = Cp/Cv and Pvap = 0, and for an isothermal vapour
bubble, κ = 1 and Pvap = const. In (4.14), 〈( · )〉 is defined as

〈( · )〉 =
1

4π

∫ 2π

0

∫ π

0

( · ) sin θ dθ dφ

and pv = εp̃v is assumed because the viscous pressure correction is at most O(ε).
(iii) Zero permittivity ratio condition

∂Ψu

∂r
+ ζu

∂2Ψs

∂r2
+ 1

2

[
L2(ζuΨs)− ζuL2(Ψs)−ΨsL

2(ζu)
]

= 0. (4.16)

As we can see in (4.13)–(4.16), the behaviour of small-amplitude oscillation is
affected by (i) the steady deformation (represented by ζs), (ii) the electric field (rep-
resented by Ψs and Ψu), and (iii) the viscous effect (represented by the dimensionless
number S and the viscous pressure correction term p̃v). Up to O(W ) or O(S), these
three effects are independent of each other and can be treated separately for simplicity.

4.1. The effects of axisymmetric steady deformation

In this section, we do not deal with the effect of a specific steady deformation. Rather,
we consider the effect of a general axisymmetric deformation in order for the results
to be applicable to other problems as well.

When the steady deformation is represented as

ζs =
∑

α
(s)
j Y

0
j , (4.17)

the effect of each mode is linearly additive. Thus, it is sufficient to consider a single
mode of steady deformation

ζs = α
(s)
j Y

0
j . (4.18)

For ζu and Φu, we assume

ζu =
∑
l,m

αlm(t)Y m
l , Φu =

∑
l,m

βlm(t)r−(l+1)Y m
l . (4.19)
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Since we consider only the effect of steady deformation, we put Ψs = 0 and Ψu = 0.
Then, from the kinematic condition, we have

α̇lm = −(l + 1)βlm

+ 1
2
Wα

(s)
j

[∑
p,q

βpq〈l, m|j, 0|p, q〉{l(l + 1) + (p+ 1)(p+ 4)− j(j + 1)}
]

(4.20)

where

〈l, m|j, 0|p, q〉 =

∫ 2π

0

∫ π

0

Y m
l
∗Y 0

j Y
q
p sin θ dθ dφ, (4.21)

and

L2Y m
l = l(l + 1)Y m

l . (4.22)

From the normal stress condition, we have

β̇lm = (l − 1)(l + 2)αlm + 3κPg0α00δl0

+Wα
(s)
j

[∑
p,q

{(p3 − 3p)− 2(j2 + j − 1)}αpq〈l, m|j, 0|p, q〉
]

+3κPg0Wα
(s)
j α00〈l, m|j, 0|0, 0〉, (4.23)

where δl0 is the Kronecker delta and the relationship

β̇pq = (p− 1)(p+ 2)αpq + 3κPg0α00δp0 + O(W ) (4.24)

has been used in the rearrangement.
By using the properties of

〈l, m|j, 0|p, q〉 =

∫ 2π

0

∫ π

0

Y m
l
∗Y 0

j Y
q
p sin θ dθ dφ,

which is non-zero only if (i) m = q and (ii) l− j 6 p 6 l+ j, and (iii) l+ p+ j is even,
we can rewrite the kinematic condition as

α̇lm = −(l + 1)βlm

+ 1
2
α

(s)
j W

[
βlm{2l2 + 6l + 4− j(j + 1)}〈l, m|j, 0|l, m〉+ · · ·] (4.25)

and the normal stress condition as

β̇lm = (l − 1)(l + 2)αlm + 3κPg0α00δl0

+α(s)
j W

[
αlm{(l3 − 3l)− 2(j2 + j − 1)}〈l, m|j, 0|l, m〉+ · · ·]

+α(s)
j W

[
3κPg0α00〈l, m|j, 0|0, 0〉]. (4.26)

In the brackets of (4.25) and (4.26), terms such as βl−j,m, βl+j,m, αl−j,m, αl+j,m (j 6= 0)
are not given explicitly because, as will be shown below, the effect of those terms on
the oscillation frequency is at most O(W 2). Thus, in the subsequent arguments, the
effect of those terms is not considered.
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We can first show by combining (4.25) and (4.26) that the dynamical equation for
αlm has the form (for simplicity, consider l 6= 0)

α̈lm +
[
G0(l, m, j) + G1(l, m, j)W

]
αlm = W

∑
p6=l

H(l, m, j, p)αpm + O(W 2), (4.27)

where G0, G1, H are O(1) coefficients for which we do not have to know the exact
expressions at this point. Now we can show that the effect of the terms with αpm
(p 6= l) in the right-hand side of (4.27) is at most O(W 2) by using the same argument
as the one in Kang & Leal (1988) (see their equations (4.30)–(4.34)). But here we
also touch on the idea very briefly. We substitute αlm = αlm0e

λt, αpm = αpm0e
λt (p 6= l)

into (4.27). Then we obtain a matrix which must be singular in order to have a
non-trivial solution for αlm0 (after truncating the system of coupled equations at an
arbitrarily large l). The matrix has the diagonal elements of λ2 + (G0 + G1W ), and
O(W ) or smaller off-diagonal elements resulting from the terms in the right-hand side
of (4.27). In computation of the determinant of a matrix, any off-diagonal element
must be multiplied by other off-diagonal elements at least once. Thus the contribution
of the off-diagonal elements to the determinant is at most O(W 2). Consequently the
contribution of the terms on the right-hand side of (4.27) to the frequency is at most
O(W 2).

Now we can see from (4.26) that the volume mode oscillation (l = 0) behaves a
little differently from the shape mode oscillation (l 6= 0). Thus we consider two cases
separately.

(i) l = 0 (volume mode oscillation): when l = 0 and consequently m = 0, (4.25) and
(4.26) can be combined to produce the dynamical equation for α00 which is valid to
O(W ):

α̈00 + (3κPg0 − 2)

[
1−W 3

(4π)1/2
α

(s)
j

(
κPg0 − 2

3κPg0 − 2

)
δj0

]
α00 = 0. (4.28)

Therefore, the frequency of oscillation of the zeroth mode is modified as

ω2
00 = ω∗0

2

[
1−W 3

(4π)1/2
α

(s)
j

(
κPg0 − 2

3κPg0 − 2

)
δj0

]
(4.29)

where ω∗0 is the frequency of oscillation in the absence of an electric field and

ω∗0
2 = 3κPg0 − 2. The results (4.28) and (4.29) indicate that the zeroth mode (volume

mode) is not influenced by the shape change (i.e. j > 2) but only by the volume
change in steady deformation up to the linear oscillation range. However, in the range
of higher-order nonlinear oscillation, it is known that there is an interaction between
the volume and shape modes (Longuet-Higgins 1989a,b; Yang, Feng & Leal 1993).
Now if we represent the steady volume change by using the Legendre polynomial as

ζs = α
(s)
j Y

0
j = α̃

(s)
j Pj(cos θ),

then

ω2
00 = ω∗0

2

[
1−W 3

(2j + 1)1/2
α̃

(s)
j

(
κPg0 − 2

3κPg0 − 2

)
δj0

]
. (4.30)

(ii) l 6= 0 (shape mode): when l 6= 0, (4.25) and (4.26) can be combined as

α̈lm + (l − 1)(l + 1)(l + 2)
[
1− A(j)

02 (l, m)α(s)
j W

]
αlm = 0 (4.31)
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where

A
(j)
02 (l, m) =

(l − 1)(l + 2){l2 + 3l + 2− 1
2
j(j + 1)} − (l + 1){l3 − 3l − 2(j2 + j − 1)}

(l − 1)(l + 1)(l + 2)

×〈l, m|j, 0|l, m〉. (4.32)

In terms of the oscillation frequency, we have

ω2
lm = ω∗l

2[
1− A(j)

02 (l, m)α(s)
j W

]
(4.33)

where

ω∗l
2

= (l − 1)(l + 1)(l + 2).

The result (4.32) has a special meaning. By applying the addition theorem of
spherical harmonics to (4.32), we can show that

l∑
m=−l

A
(j)
02 (l, m) = 0 if j 6= 0 (4.34)

and
l∑

m=−l
ω2
lm = (2l + 1)ω∗l

2
if j 6= 0. (4.35)

The significance of result (4.35) is that the (2l + 1)-fold degeneracy of oscillation fre-
quency is split into different values depending on m due to the j-mode axisymmetric
steady shape change. However, the average frequency is preserved. The same conclu-
sion was obtained for drop oscillation in an alternating magnetic field (Cummings &
Blackburn 1991).

Now it is worthwhile to consider some special cases.
(i) j = 0 (the effect of steady volume change): in this case, A(0)

02 (l, m) = 3/(4π)1/2

and

ω2
lm = ω∗l

2

[
1− 3

α
(s)
0

(4π)1/2
W

]
. (4.36)

The above result can be verified quite easily by the following argument. When
ζs = α

(s)
0 Y

0
0 , the deformed bubble has a spherical shape of changed radius. Thus the

problem now is to compute the frequency of oscillation about the new spherical
bubble of radius a(1 + Wζs) = a[1 + α

(s)
0 /(4π)1/2W ]. Then if we take the new radius

as the characteristic length scale instead of lc = a, the dimensionless results are the
same as before the volume change. Since the square of the dimensional frequency
is inversely proportional to the third power of the characteristic length scale (ω̂2

l =
ω2
l /t

2
c = ω2

l0(γ/ρ/l
3
c ), where ω̂l and ωl are the dimensional and the dimensionless

frequencies of the lth mode oscillation, see the definitions of characteristic scales in
the first paragraph of this section),

ω̂l,new = ω̂l,old

[
1 +

α
(s)
0

(4π)1/2
W

]−3

= ω̂l,old

[
1− 3

α
(s)
0

(4π)1/2
W

]
O(W 2). (4.37)

Therefore, we have the same result as in (4.36).
(ii) j = 2: this case is of special interest because the steady bubble shape in many

situation includes a P2-mode (or Y 0
2 -mode) component as we have seen in the previous
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Figure 6. The frequency modification of Y m
2 -modes due to P2-mode steady deformation (i.e.

Rs(θ) = 1 + α̃
(s)
2 WP2(cos θ)).

section. When j = 2, (4.32) reduces to

A
(2)
02 (l, m) =

3(l3 + l2 + 2l + 4)

(l − 1)(l + 1)(l + 2)
〈l, m|2, 0|l, m〉, (4.38)

where

〈l, m|2, 0|l, m〉 =

(
5

4π

)1/2[
3

2

{ (l − m+ 1)(l + m+ 1)

(2l + 1)(2l + 3)
+

(l − m)(l + m)

(2l − 1)(2l + 1)

}
− 1

2

]
. (4.39)

In particular, for the axisymmetric oscillation (m = 0), (4.38) reduces to

A
(2)
02 (l, 0) =

(
5

4π

)1/2
3l(l3 + l2 + 2l + 4)

(2l − 1)(2l + 3)(l − 1)(l + 2)
. (4.40)

If the steady deformation is represented as

ζs = α
(s)
2 Y

0
2 = α̃

(s)
2 P2(cos θ), (4.41)

the frequency of axisymmetric oscillation due to the P2-mode steady shape change is
given by

ω2
l0

ω∗l
2

= 1− Ã(2)
02 (l, 0)α̃(s)

2 W, (4.42)

where

Ã
(2)
02 (l, 0) =

(
4π/5

)1/2
A

(2)
02 (l, 0).

In figure 6, the frequency modification of Y m
2 (θ, φ)-modes due to the P2-mode

steady deformation (Rs(θ) = 1 + α̃
(s)
2 WP2(cos θ)) is shown. In this case,

Ã
(2)
02 (2, 0) = 10

7
, Ã

(2)
02 (2,±1) = 5

7
, Ã

(2)
02 (2,±2) = − 10

7
. (4.43)

As we can see in figure 6, the frequencies of Y 0
2 -, Y ±1

2 -modes decrease while those

of Y ±2
2 -modes increase as α̃(s)

2 W increases (the steady shape becomes more prolate).
Another thing we should note is that the frequency of the Y 0

2 -mode (axisymmetric
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Figure 7. The effects of P2- and P4- mode steady deformation on the frequency modifica-
tion of axisymmetric oscillation. The ordinate represents the values of the functions of l in

the frequency modification equation given by ω2
l0 = ω∗l

2[1 − (Ã(2)
02 (l, 0)α̃(s)

2 + Ã
(4)
02 (l, 0)α̃(s)

4 )W ] when

Rs(θ) = 1 + [α̃(s)
2 P2(cos θ) + α̃

(s)
4 P4(cos θ)]W.

mode) can be larger than the natural frequency for the oblate steady shape (α̃(s)
2 W < 0).

The same behaviour, that the oblate deformation results in an increase of in the
oscillation frequency, has also been observed for the drop problem experimentally
(Trinh & Wang 1982) and theoretically (Kang 1993).

(iii) j = 4: equation (4.32) reduces to

A
(4)
02 (l, m) =

3l3 − 4l2 + 27l + 54

(l − 1)(l + 1)(l + 2)
〈l, m|4, 0|l, m〉. (4.44)

Evaluation of 〈l, m|4, 0|l, m〉 can be easily done by using the formula given in the
Appendix. In particular, for the axisymmetric mode (m = 0) oscillation, we have

A
(4)
02 (l, 0) =

9

4

(
9

4π

)1/2
l(3l3 − 4l2 + 27l + 54)

(2l − 3)(2l − 1)(2l + 3)(2l + 5)
. (4.45)

If the steady deformation is represented as

ζs = α
(s)
4 Y

0
4 = α̃

(s)
4 P4(cos θ), (4.46)

the frequency modification of axisymmetric oscillations due to the P4-mode steady
shape change is given by

ω2
l0

ω∗l
2

= 1− Ã(4)
02 (l, 0)α̃(s)

4 W, (4.47)

where

Ã
(4)
02 (l, 0) = ( 4

9
π)1/2A

(4)
02 (l, 0).

In figure 7, Ã(2)
02 (l, 0) and Ã(4)

02 (l, 0) are shown. As we can see from the figure with (4.42)
and (4.47), if the steady deformation has the positive components of P2- and P4-
modes, the frequencies of axisymmetric oscillation decrease due to the steady shape
change.
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4.2. Special effects of electric fields

As we have discussed already, the overall effect of an electric field on the bubble
oscillation can be decomposed into two parts: (i) the indirect effect via the change
in steady shape, and (ii) the direct effect of the electric field on the oscillation about
a spherical shape. In this section, we consider the latter. Differently from the effects
of steady deformation, the effect of an electric field on the oscillation is not linear
because the electrical stress is a function of EE . Thus we consider two specific electric
fields: uniform and axisymmetric straining.

4.2.1. The effect of a uniform electric field

The uniform electric field about the spherical steady shape has the electric potential

Ψs =

(
r +

1

2r2

)
P1(cos θ) =

(
4
3
π
)1/2

(
r +

1

2r2

)
Y 0

1 . (4.48)

Thus we have

Ψs|r=1 = 3
2
( 4

3
π)1/2Y 0

1 (4.49)

and
∂

∂r
(∇Ψs · ∇Ψs)|r=1 = 3

(
4
5
π
)1/2

Y 0
2 − 3(4π)1/2Y 0

0 . (4.50)

For the unsteady electric field, we assume

Ψu =
∑
l,m

γlm(t)r−(l+1)Y m
l . (4.51)

By substituting equations (4.49) to (4.51) with ζs = 0 into (4.13), (4.14), and (4.16), we
obtain:

(i) kinematic condition:

α̇lm = −(l + 1)βlm, (4.52)

(ii) normal stress condition:

1
2
W

[
3
2

(
4
3
π
)1/2

∑
p,q

γpq{l(l + 1)− 2− p(p+ 1)}〈l, m|1, 0|p, q〉

−3
(

4
5
π
)1/2

∑
p,q

αpq〈l, m|2, 0|p, q〉+ 3(4π)1/2
∑
p,q

αpq〈l, m|0, 0|p, q〉
]

−3κPg0α00δl0 + β̇lm = (l − 1)(l + 2)αlm, (4.53)

(iii) zero permittivity ratio condition:

(l + 1)γlm = 3
4

(
4
3
π
)1/2

∑
p,q

αpq〈l, m|1, 0|p, q〉{l(l + 1) + 2− p(p+ 1)}. (4.54)

By using the properties of 〈l, m|j, 0|p, q〉, and by combining the normal stress
condition and the zero permittivity ratio condition, we have

− 9
4
W

[
(l − 1)2

l
4
3
π〈l − 1, m|1, 0|l, m〉2 + (l + 2) 4

3
π〈l + 1, m|1, 0|l, m〉2

]
αlm

− 3
2
W ( 4

5
π)1/2〈l, m|2, 0|l, m〉αlm + · · ·+ 3

2
Wαlm

− 3κPg0α00δl0 + β̇lm = (l − 1)(l + 2)αlm. (4.55)
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In (4.55), the terms with αl−2,m and αl+2,m are not given explicitly because their effect
is at most O(W 2), shown by the same argument as the one below (4.26). Now, by
combining (4.52) and (4.55), we get the dynamical equations for αlm(t) as

(i) for l = 0

α̈00 + (3κPg0 − 2)

[
1 +

(
2

3κPg0 − 2

)
Auni01 (0, 0)W

]
α00 = 0, (4.56)

(ii) for l > 2

α̈lm + (l − 1)(l + 1)(l + 2)
[
1− Auni01 (l, m)W

]
αlm = 0, (4.57)

where

Auni01 (l, m) = −9

4

[
(l − 1)

l(l + 2)
4
3
π〈l − 1, m|1, 0|l, m〉2 +

1

l − 1
4
3
π〈l + 1, m|1, 0|l, m〉2

]

+
3

2(l − 1)(l + 2)

[
1− ( 4

5
π
)1/2〈l, m|2, 0|l, m〉] (4.58)

and the expressions for 〈l − 1, m|1, 0|l, m〉, 〈l + 1, m|1, 0|l, m〉, 〈l, m|2, 0|l, m〉 are given in
the Appendix. Therefore, the direct effect of a uniform electric field on the frequency
of oscillation about spherical shape can be represented as

(i) for l = 0:

ω2
00

ω∗0
2

= 1 +

(
2

3κPg0 − 2

)
Auni01 (0, 0)W (4.59)

where ω∗l
2 = 3κPg0 − 2, and

(ii) for l > 2:

ω2
lm

ω∗l
2

= 1− Auni01 (l, m)W, (4.60)

where ω∗l
2 = (l − 1)(l + 1)(l + 2).

From the above, we can see that

m∑
l=−m

ω2
lm 6= (2l + 1)ω∗l

2
(4.61)

because of 〈l − 1, m|1, 0|l, m〉2 and 〈l + 1, m|1, 0|l, m〉2. If we recall that the average
oscillation frequency is preserved in the case of the steady deformation effect (equation
(4.35)), we can see that the frequency modification characteristics are different in the
case of the direct effect of an electric field.

In the case of axisymmetric oscillation, (4.60) reduces to

ω2
l0

ω∗l
2

= 1− Auni01 (l, 0)W, (4.62)

where

Auni01 (l, 0) = − 9l(2l3 + l2 − 2l + 2)

2(l − 1)(l + 2)(2l − 1)(2l + 1)(2l + 3)
.
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As we can see above, Auni01 (l, 0) is negative for all mode numbers l. Thus, the frequency
of axisymmetric oscillation increases due to the direct effect of uniform electric field.
This point will be discussed later in detail.

4.2.2. The effect of axisymmetric straining electric field

When the undisturbed electric field is given in dimensionless form as E∞ = G · x
with

G =

 1 0 0

0 − 1
2

0

0 0 − 1
2

 , (4.63)

we have

Ψs =

(
r2

2
+

1

3r3

)
P2(cos θ) = ( 4

5
π)1/2

(
r2

2
+

1

3r3

)
Y 0

2 . (4.64)

Now, for convenience we denote some important terms as

Ψs|r=1 = γ
(s)
2 Y

0
2 , (4.65)

and
∂

∂r
(∇Ψs · ∇Ψs)|r=1 = η

(s)
0 Y

0
0 + η

(s)
2 Y

0
2 + η

(s)
4 Y

0
4 , (4.66)

where

γ
(s)
2 = 5

6

(
4
5
π
)1/2

, η
(s)
0 = − 5

3
(4π)1/2, η

(s)
2 = − 25

21

(
4
5
π
)1/2

, η
(s)
4 = 20

7

(
4
9
π
)1/2

.

The kinematic condition is again given by (4.52), but the normal stress condition is
given by

1
2
W

[
γ

(s)
2

∑
p,q

γpq{l(l + 1)− 6− p(p+ 1)}〈l, m|2, 0|p, q〉
]

− 1
2
W

[∑
p,q

αpq{η(s)
0 〈l, m|0, 0|p, q〉+ η

(s)
2 〈l, m|2, 0|p, q〉+ η

(s)
4 〈l, m|4, 0|p, q〉}

]

−3κPg0α00δl0 + β̇lm = (l − 1)(l + 2)αlm. (4.67)

The zero permittivity ratio condition becomes

(l + 1)γlm − 6γ(s)
2

∑
p,q

αpq〈l, m|2, 0|p, q〉

= 1
2
γ

(s)
2

[∑
p,q

αpq〈l, m|2, 0|p, q〉{l(l + 1)− 6− p(p+ 1)}
]
. (4.68)

Then by using the properties of 〈l, m|2, 0|p, q〉, we have the following result from
(4.68):

γlm = γ
(s)
2

[
2αl−2,m〈l, m|2, 0|l − 2, m〉+

(
3

l + 1

)
αlm〈l, m|2, 0|l, m〉

−
(

2l

l + 1

)
αl+2,m〈l, m|2, 0|l + 2, m〉

]
(4.69)
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By substituting (4.69) into (4.67), we have

β̇lm = (l − 1)(l + 2)αlm + 3κPg0α00δl0

+W (γ(s)
2 )2

[
4(l − 2)2

l − 1
〈l, m|2, 0|l − 2, m〉2

+
9

l + 1
〈l, m|2, 0|l, m〉2 + 4(l + 3)〈l, m|2, 0|l + 2, m〉2

]
αlm

+ 1
2
W [η(s)

0 〈l, m|0, 0|l, m〉+ η
(s)
2 〈l, m|2, 0|l, m〉

+η(s)
4 〈l, m|4, 0|l, m〉]αlm + · · · . (4.70)

By combining (4.70) and the kinematic condition, we have the dynamical equation
for αlm(t):

(i) for l = 0:

α̈00 + (3κPg0 − 2)

[
1 +

(
2

3κPg0 − 2

)
Astr01 (0, 0)W

]
α00 = 0, (4.71)

(ii) for l > 2:

α̈lm + (l − 1)(l + 1)(l + 2)
[
1− Astr01 (l, m)W

]
αlm = 0, (4.72)

where

Astr01 (l, m) = − 25

36(l − 1)(l + 2)

[
4(l − 2)2

l − 1
4
5
π〈l, m|2, 0|l − 2, m〉2

+
9

l + 1

(
4
5
π
)〈l, m|2, 0|l, m〉2 + 4(l + 3)

(
4
5
π
)〈l, m|2, 0|l + 2, m〉2

]
− 1

2(l − 1)(l + 2)
[− 5

3
(4π)1/2〈l, m|0, 0|l, m〉 − 25

21

(
4
5
π
)1/2〈l, m|2, 0|l, m〉

+ 20
7

(
4
9
π
)1/2〈l, m|4, 0|l, m〉]. (4.73)

In (4.73), the coefficients γ(s)
2 , η(s)

0 , η(s)
2 , η(s)

4 defined below (4.66) are substituted. There-
fore, the direct effect of a straining electric field is

(i) for l = 0:

ω2
00

ω∗0
2

= 1 +

(
2

3κPg0 − 2

)
Astr01 (0, 0)W, (4.74)

where ω∗l
2 = 3κPg0 − 2, and

(ii) for l > 2:

ω2
lm

ω∗l
2

= 1− Astr01 (l, m)W, (4.75)

where ω∗l
2 = (l− 1)(l+ 1)(l+ 2). In particular when m = 0 (axisymmetric oscillation),

Astr01 (l, 0) = −25(8l8 + 20l7 − 22l6 − 37l5 + 53l4 − 4l3 − 72l2 + 15l − 9)

2(l − 1)(l + 2)(2l − 3)(2l − 1)2(2l + 1)(2l + 3)2(2l + 5)
(4.76)

which is negative for all l > 2. Therefore, as in the case of a uniform electric field, the
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straining electric field has the direct effect of increasing the frequency of axisymmetric
oscillation for all the mode numbers l > 2. This point will be discussed later in detail.

4.3. Overall effect of a uniform electric field

Recall that the electric field affects the oscillation frequency in two ways: (i) via the
change in steady shape, and (ii) by the direct effect on the oscillation of a bubble
about spherical shape. We now put the results of the two effects from previous sections
together to see the overall effect.

In the case of a uniform electric field, we have the steady deformation (from (3.21))

ζs = α
(s)
0 Y

0
0 + α

(s)
2 Y

0
2 , (4.77)

with

α
(s)
0 = − 3

4(3κPg0 − 2)
(4π)1/2, α

(s)
2 = 3

16

(
4
5
π
)1/2

.

The above result is combined with the results in the previous sections to get the
overall frequency change. For the volume mode oscillation (l = 0), the results in
(4.29) and (4.62) are combined to get

ω2
00

ω∗0
2

= 1− 3
α

(s)
0

(4π)1/2

(
κPg0 − 2

3κPg0 − 2

)
W, (4.78)

where Auni01 (0, 0) = 0 has been used and ω∗0
2 = 3κPg0 − 2. By substituting the result

(4.77), we have

ω2
00

ω∗0
2

= 1 +
9

4(3κPg0 − 2)

(
κPg0 − 2

3κPg0 − 2

)
W. (4.79)

For the shape mode oscillation (l > 2), the overall effect of a uniform electric field
can be written as

ω2
lm

ω∗l
2

= 1− [Auni01 (l, m) + A
(0)
02 (l, m)α(s)

0 + A
(2)
02 (l, m)α(s)

2

]
W, (4.80)

where Auni01 (l, m) is given in (4.58), A(0)
02 (l, m) in (4.36), and A(2)

02 (l, m) in (4.38). In (4.80),
Auni01 (l, m)W represents the frequency decrease due to the direct effect of the uniform
electric field on the oscillation about the undeformed spherical shape. Other terms
A

(0)
02 (l, m)α(s)

0 W and A
(2)
02 (l, m)α(s)

2 W represent the frequency decrease of free oscillation
due to the deformed steady shape given in the form of (4.77). If the gas inside the
bubble is incompressible, α(s)

0 = 0, and (4.80) reduces to

ω2
lm

ω∗l
2

= 1− [Auni01 (l, m) + A
(2)
02 (l, m)α(s)

2

]
W. (4.81)

In particular, for the axisymmetric oscillation (m = 0), we have

ω2
l0

ω∗l
2

= 1− [Auni01 (l, 0) + A
(2)
02 (l, 0)α(s)

2

]
W, (4.82)

where

Auni01 (l, 0) = − 9l(2l3 + l2 − 2l + 2)

2(l − 1)(l + 2)(2l − 1)(2l + 1)(2l + 3)
, (4.83)

A
(2)
02 (l, 0)α(s)

2 =
9l(l3 + l2 + 2l + 4)

16(2l − 1)(2l + 3)(l − 1)(l + 2)
. (4.84)
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For axisymmetric modes of oscillation of a bubble in a uniform electric field, the
two independent effects and the combined effect are shown in figure 8. As we can see
in the figure, the oscillation frequency increases due to the direct effect of the uniform
electric field on oscillations about spherical shape. Note that Auni01 (l, 0) < 0 for all l
and Auni01 (l, 0) → 0 as l → ∞. On the other hand, the deformed steady shape has the

effect of frequency decrease. Note that A(2)
02 (l, 0)α(s)

2 > 0 for all l and A(2)
02 (l, 0)α(s)

2 → 9
64

as l → ∞. These opposite tendencies make an interesting result for the overall effect
of an electric field. The frequencies of axisymmetric modes increase for lower mode
numbers (l 6 6), while they decrease for higher mode numbers (l > 7) as shown in
figure 8.

The above two effects may be explained as follows. In the uniform electric field, a
bubble is deformed into a prolate shape and the arclength between the two poles is
increased compared with the spherical shape. In the case of unforced free axisymmetric
oscillation, the frequency decreases as the arclength increases, which may explain the
effect of deformed shape on the frequency change. On the other hand, the direct effect
of an electric field requires another explanation. In the case of a bubble with the
permittivity ratio q = εin/ε → 0, the electric field is always tangential to the bubble
surface (En = n ·E = 0). Thus the electrical normal stress is given by

T (e)
nn = − 1

2
εE2

t , (4.85)

which means the electrical field exerts a suppressive force on the surface. Now, if some
part of the surface protrudes from the spherical surface, near the protruded point
the electric field becomes stronger due to the concentration of electric field. Thus,
the bubble is experiencing a relatively stronger suppressive force near the protruded
point. This suppressive force adds to the returning action by the surface tension. If
some part is indented, the electric field becomes weaker near that point. Thus the
suppressive force is weaker than the case of a spherical shape, and again this weaker
suppressive force adds to the returning action. Since the electric field has an effect of
increased surface tension, the oscillation frequency is expected to be increased. Since
we have not assumed any specific electric field in the discussion of the direct effect, it
may be stated that any type of electric field has an effect of increasing the oscillation
frequency about a spherical shape as long as the liquid is a perfect dielectric.

It is worthwhile to compare the above results with those of a conducting drop in
a uniform electric field, which are available in Kang (1993). The steady deformation
into a prolate shape of a conducting drop has the effect of decreasing the oscillation
frequency as in the case of bubble. However, differently from the case of a bubble,
the oscillation frequency of a conducting drop about spherical shape decreases in
the uniform electric field. The effect of the deformed steady drop shape can also
be explained by the extended arclength because the drop is also deformed into the
prolate shape. The direct effect on the oscillation about a spherical shape can be
explained as following. The electric field about the conducting drop has only the
normal component at the drop surface and the electrical normal stress is given by

Te
nn = 1

2
εE2

n , (4.86)

which means that the electric field exerts a pulling force on the surface (recall that
the electric field exerts a suppressive force in the bubble case). If there is a protruded
part of the drop surface, the normal stress becomes larger due to the concentrated
electric field about the protruded part and the electrical normal stress pulls out the
surface more strongly than the spherical case. Thus once there is a protruded part,
the electrical stress retards the action of surface tension to return to the spherical
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shape. If there is an indented part, the pulling force due to the electric field is weaker
than the spherical case and it again retards the surface tension action. Thus, the
electric field has an effect that is equivalent to reduced surface tension. Consequently,
the frequency of oscillation is decreased due to the electric field in the case of a
conducting drop.

4.4. Overall effect of a straining electric field

In the case of a straining electric field, we have the steady deformation (from (3.26))

ζs = α
(s)
0 Y

0
0 + α

(s)
2 Y

0
2 + α

(s)
4 Y

0
4 (4.87)

with

α
(s)
0 = − 5

12(3κPg0 − 2)
(4π)1/2, α

(s)
2 = − 25

336

(
4π

5

)1/2

, α
(s)
4 =

5

126

(
4π

9

)1/2

.

Let us first consider the case of volume oscillation (l = 0). The results in (4.30) and
(4.71) can be combined to get

ω2
00

ω∗0
2

= 1 +
2

3κPg0 − 2
Astr01 (0, 0)W − 3

α
(s)
0

(4π)1/2

(
κPg0 − 2

3κPg0 − 2

)
W

= 1 +
5

12(3κPg0 − 2)

[
2 + 3

(
κPg0 − 2

3κPg0 − 2

)]
W, (4.88)

where Astr01 (0, 0) = 5/12 has been used and ω∗0
2 = 3κPg0 − 2.

When l > 2 (shape mode oscillation), the overall effect of a straining electric field
can be written as

ω2
lm

ω∗l
2

= 1− [Astr01 (l, m) + A
(0)
02 (l, m)α(s)

0 + A
(2)
02 (l, m)α(s)

2 + A
(4)
02 (l, m)α(s)

4

]
W, (4.89)

where Astr01 (l, m) is given in (4.73), A(0)
02 (l, m) in (4.36), A(2)

02 (l, m) in (4.38), and A
(4)
02 (l, m)

in (4.44). If the gas inside the bubble is incompressible, α(s)
0 = 0, and (4.89) reduces to

ω2
lm

ω∗l
2

= 1− [Astr01 (l, m) + A
(2)
02 (l, m)α(s)

2 + A
(4)
02 (l, m)α(s)

4

]
W. (4.90)

In particular for the axisymmetric oscillation, we have

ω2
l0

ω∗l
2

= 1− [Astr01 (l, 0) + A
(2)
02 (l, 0)α(s)

2 + A
(4)
02 (l, 0)α(s)

4

]
W (4.91)

with

Astr01 (l, 0) = −25(8l8 + 20l7 − 22l6 − 37l5 + 53l4 − 4l3 − 72l2 + 15l − 9

2(l − 1)(l + 2)(2l − 3)(2l − 1)2(2l + 1)(2l + 3)2(2l + 5)
(4.92)

and

A
(2)
02 (l, 0)α(s)

2 = − 25l(l3 + l2 + 2l + 4)

112(2l − 1)(2l + 3)(l − 1)(l + 2)
, (4.93)

A
(4)
02 (l, 0)α(s)

4 =
5l(3l3 − 4l2 + 27l + 54)

56(2l − 3)(2l − 1)(2l + 3)(2l + 5)
. (4.94)

The results for the axisymmetric bubble oscillation in a straining electric field are
shown in figure 9.
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As discussed in the subsection for the uniform electric field, a straining electric
field also increases the frequency of oscillation about a spherical shape. In the case
of the deformed steady shape effect, the positive components of both P2- and P4-
modes have the effect of decreasing oscillation frequency. However, in the case of the
straining electric field, the steady deformation has a negative component for the P2-
mode and a positive component for the P4-mode.

4.5. Weak viscosity effect

As mentioned earlier, the effects of the electric field and the viscosity are independent
of each other to O(W ) or O(S). Thus for the present work, it is sufficient to consider
the viscosity effect on the oscillation of a bubble about a spherical shape. The result
for the viscous effect was first obtained using the dissipation theory by Lamb (1932),
but here we touch on the problem very briefly according to the formulation in this
section. For oscillation about a spherical shape with a weak viscosity effect, we have
the kinematic condition

∂ζs

∂t
=
∂φu

∂r
(4.95)

and the normal stress condition

∂Φu

∂t
+ 2S

∂2Φu

∂r2
− p̃v − 3κ〈ζu〉Pg0 = −2ζu + L2(ζu). (4.96)

By using the results in Prosperetti (1977) or Kang & Leal (1988) for p̃v , we can show
from the kinematic condition

α̇lm = −(l + 1)βlm (4.97)

and from the normal stress condition

β̇lm + 2S(2l + 1)(l + 2)βlm − 3κPg0α00δl0 = (l − 1)(l + 2)αlm. (4.98)

By combining (4.97) and (4.98), we have
(i) l = 0:

α̈00 + 4Sα̇00 + (3κPg0 − 2)α00 = 0, (4.99)

(ii) l 6= 0:

α̈lm + 2S(2l + 1)(l + 2)α̇lm + (l − 1)(l + 1)(l + 2)αlm = 0. (4.100)

Therefore the effect of viscosity on the oscillation frequency is O(S2) and given by
(i) l = 0:

ω2
00

ω∗0
2

= 1− 4

(3κPg0 − 2)
S2 (4.101)

where ω∗0
2 = 3κPg0 − 2,

(ii) l > 2:

ω2
lm

ω∗l
2

= 1− D0(l)S
2 (4.102)

where ω∗l
2 = (l − 1)(l + 1)(l + 2) and

D0(l) =
(2l + 1)2(l + 2)

(l − 1)(l + 1)
.
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5. Concluding remarks

In the present work, a three-dimensional analysis is performed to investigate the
effects of an electric field on the steady deformation and the small-amplitude oscilla-
tion of a bubble in a dielectric liquid. As a first attempt, the simplest case of a bubble
in a perfect dielectric liquid is considered. However, in order to deal with a general
class of electric fields, an arbitrary electric field near the bubble is approximated by
the sum of a uniform field and a linear field. The electric field inside and outside
the bubble is obtained first by using the leaky dielectric model of Melcher & Taylor
(1969) under the assumption that the surface current is negligible. Then the problem
of a bubble in a perfect dielectric liquid is considered as a special case.

For steady deformation of a bubble in an arbitrary electric field, a general formula
is obtained. It is found that, to the first-order effect of an electric field, the steady
bubble shape can be in general represented by a linear combination of a finite number
of spherical harmonics Y m

l , where 0 6 l 6 4 and |m| 6 l.
In an electric field, a bubble does not oscillate about the spherical shape but

it oscillates about the deformed steady shape. Thus, we need to consider also the
indirect effect of an electric field on the frequency change via the deformed steady
shape in addition to the direct effect on the oscillation about a spherical shape. To
the first order, the two effects are of the same order and mutually independent. The
overall frequency change can thus be decomposed into two parts: (i) free oscillation
about the deformed steady shape, and (ii) oscillation about the undeformed spherical
shape due to the direct effect of the electric field. The deformed steady shape has an
effect that splits the (2l+1)-fold degeneracy of oscillation frequency of Y m

l modes, in
the case of oscillation about the spherical shape, into the different frequencies that
depend on m. However, when the average is taken over the 2l+1 different m values,
the average frequency is preserved. On the other hand, the splitting of oscillation
frequencies due to the direct effect does not preserve the average frequency.

The frequency modification of axisymmetric modes has been studied in more detail
and it has been found that the direct and the indirect effects show opposite tendencies
with the increase of electric field. For axisymmetric modes of an incompressible
bubble, deforming the steady shape into a prolate spheroid has an effect that decreases
the oscillation frequency due to the extended pole-to-pole arclength of the prolate
spheroid. However, it has been found that the electric field increases the frequency of
oscillation about a spherical shape. For a bubble, the electric field exerts a suppressive
force on the surface, which becomes relatively stronger at protruding parts of the
surface and relatively weaker at indented parts. According to this mechanism, the
electric field strengthens the action of surface tension, and consequently the frequency
of oscillation about the undeformed spherical shape increases in electric fields.

As in the bubble case, the overall frequency change of a conducting drop can be
decomposed into the same two parts: A conducting drop has a prolate steady shape
in a uniform electric field and the frequency of axisymmetrc oscillation decreases
due to this steady shape change as in the case of bubble. However, the drop shows
different characteristics for the direct effect of electric field. The electric field outside
the drop exerts a pulling force on the surface, and the protruded part of surface
experiences a relatively stronger pulling force and this weakens the action of surface
tension. In this way, the electric field reduces the frequency of oscillation about the
spherical shape. Thus, in the case of conducting drop, both the direct and indirect
effects decrease the frequency of axisymmetric oscillation. Indeed, it was found that
the frequency of axisymmetric oscillation decreases in a uniform electric field for all
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mode numbers l in the case of conducting drop (Kang 1993). On the other hand,
in the case of bubble, the indirect effect due to deformed steady shape reduces the
frequency of axisymmetric oscillation, while the direct effect on the oscillation about
spherical shape increases the oscillation frequency. Thus, the overall frequency change
is a function of the mode number and it has been observed from figure 8 that the
frequency decreases for lower mode numbers (l 6 6) while it increases for higher
mode numbers (l > 7).

Now it is appropriate to mention the experimental realizability of the results
obtained from this study. Various types of non-uniform electric fields can be obtained
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by changing the shapes and configurations of electrodes (e.g. Jones & Bliss 1977;
Pohl 1978; Bellini et al. 1997). The approximate electric field near the bubble can
be obtained by applying (2.1) to the electric field solution for the overall system of
electrodes. The oscillation frequency of a specific mode can be found by selectively
exciting the mode by using a weak time-periodic electric field (Bellini et al. 1997) or
an acoustic field (Trinh & Wang 1982).

Finally it should be mentioned that, in the present study, the simplest case of
a perfect dielectric liquid has been discussed and charge transport has not been
considered. For more realistic applications, however, charge transport should also be
considered. In our future works, the analysis will be improved by including its effects
such as electrokinetic effects (Saville 1997).

This work was supported by a grant from Korea Science and Engineering Founda-
tion via the Advanced Fluids Engineering Research Center at the Pohang University
of Science and Technology.

Appendix
The formulas for 〈l, m|j, 0|p, q〉 in some special cases are as follows:

(4π)1/2〈l, m|0, 0|l, m〉 = 1, (A 1)(
4
3
π
)1/2〈l, m|1, 0|l − 1, m〉 = A(l − 1, m), (A 2)(
4
3
π
)1/2〈l, m|1, 0|l + 1, m〉 = A(l, m), (A 3)(

4
5
π
)1/2〈l, m|2, 0|l − 2, m〉 = 3

2
A(l − 1, m)A(l − 2, m), (A 4)(

4
5
π
)1/2〈l, m|2, 0|l, m〉 = 3

2

[
A(l, m)2 + A(l − 1, m)2

]− 1
2
, (A 5)(

4
5
π
)1/2〈l, m|2, 0|l + 2, m〉 = 3

2
A(l, m)A(l + 1, m), (A 6)(

4
9
π
)1/2〈l, m|4, 0|l, m〉 = 35

8

[
A(l, m)2

{
A(l + 1, m)2 + A(l, m)2 + A(l − 1, m)2

}
+A(l − 1, m)2

{
A(l, m)2 + A(l − 1, m)2 + A(l − 2, m)2

}]
− 15

4

[
A(l, m)2 + A(l − 1, m)2

]
+ 3

8
, (A 7)

where

A(l, m) =

[
(l − m+ 1)(l + m+ 1)

(2l + 1)(2l + 3)

]1/2

.
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